Centre for High Energy Physics Faculty of Science University of the Punjab, Lahore Course Outline

Program	BSCP	Course Code	CPHY 231	Credit Hours	3		
Course Title Modern Physics							
Course Introduction							
This course encloses the recent developments in modern physics and helpful to understand the basic relativistic and quantum mechanical tools can be applied in study of atomic physics and quantum physics.							
Learning Outcomes							
 On the completion of the course, the students will: The course will introduce modern physics and its applications. Its objectives are as following. Understanding basic principles of relativity. Study the experiments and phenomena that lead to quantum physics. Be able to solve relevant numerical problems. 							
	Cou	rse Content					
Wools 1	Postulates of special relativity, Lorentz transformations						
WEEK I	Derivations of time dilation and length contraction.						
Week 2	Twin paradox with examples						
Week 2	Doppler effect and applications						
Wools 2	Transformation of velocity and Relativistic Variation of mass						
WEEK J	Relativistic momentum and energy						
	Black body radiation.						
WCCK 4	Photo electric effect						
Wook 5	X-ray, X- ray diffraction.						
week J	Compton effect and Pair production.						
Week 6	De Broglie's hypothesis, Davisson-Germer experiment						
	Bohr's atomic model, Energy levels and spectra						
Week 7	Laser						
	Heisenberg uncertainty principle						
Week 8	Superposition principle, Wave packet, Phase, and group velocities.						
	Quantum mechanics: Introduction Schrodinger equation (time dependent and independent).						
Week 9	A particle in a box, Finite potential well.						

	Transmission and reflection by step and barrier potentials.			
Week 10	Quantum tunneling and its applications in technology.			
	Nuclear Physics: Binding energy, Binding energy per nucleon curve			
Week 11	Radioactive decay and its types, Law of radio activity			
	Half-life and average life			
Week 12	Nuclear reaction and its types, Q-value of nuclear reaction			
	Fission and fusion reaction			
Week 12	Life cycle of a star			
week 15	Elementary particles: Leptons, Hadrons, Quarks			
W L 14	Fundamental interactions and Quantum fields			
Week 14	Introduction to the standard model of particle physics			
Week 15	Cosmology and cosmological principles			
	Hubble law and its application			
Wed 10	History of the universe, formations of stars and galaxies			
week 10	Cosmic ray microwave background			
Textbooks and Reading Material				
Recomme	nded Books:			
1. Concepts of Modern Physics (6 th edition), Arthur Bieser, <i>McGraw-Hill Higher</i> <i>Education</i> (1994)				
2. Phy	2. Physics Vol.1 (4 th edition), Halliday and Resnic, John Wiley and Sons (1992)			
3. Physics Vol.1 (5 th edition), Halliday and Resnic, John Wiley and Sons (2002)				
4. Modern Physics Simulation, R. Bigelow, J.R. Hiller and Moloney, <i>John Wiley and Sons</i> (1996)				
5. Fundamentals of Physics (5 th edition), Halliday and Resnic, <i>John Wiley and Sons</i> (2002)				
6. Phy <i>Ha</i>	Physics for Scientists and Engineers (extended version), P. M. Fishbane, <i>Prentice-Hall International Editions</i> (2016)			

Teaching Learning Strategies

The instructor is required to make use of Mathematica/Maple/Python to teach the concepts through visualization/antimutation and symbolic/numerical calculations. The students are required to solve a large portion of related exercises/questions/problems of the main textbooks.

Assignments: Types and Number with Calendar

At least two assignments and two quizzes. A course project may also be assigned.

Assessment

Sr. No. Elements Weightage Details	Details	Weightage	Elements	Sr. No.
------------------------------------	---------	-----------	----------	---------

1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.